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Abstract. The DWBA method is tested through a comparison with a microscopic cluster model on the
13C(α, n)16O reaction in the energy range E = 0–5MeV, relevant for nuclear astrophysics. The conditions
of the calculation are as close as possible to the reference model, i.e. the nucleus-nucleus potentials are
phase equivalent, and the spectroscopic factors are identical. We find significant differences between both
approaches, which means that antisymmetrization effects, missing in the DWBA, are important. Our work
also points out the strong sensitivity of the DWBA with input parameters.

PACS. 24.10.-i Nuclear reaction models and methods – 24.10.Eq Coupled-channel and distorted-wave
models

1 Introduction

The Distorted-Wave Born Approximation (DWBA)
method is widely used in nuclear physics and in nuclear
astrophysics [1–4]. It essentially deals with transfer reac-
tions and relies upon the knowledge of nucleus-nucleus
potentials in the entrance and exit channels, as well as of
the spectroscopic factors of the colliding nuclei. In nuclear
astrophysics [5], the DWBA is usually used for two pur-
poses. On one hand, the low-energy transfer cross-section
can be derived if the nucleus-nucleus potentials and the
spectroscopic factors are available. The difficulty of mea-
suring the cross-sections down to stellar energies makes
theoretical models such as the DWBA useful tools to com-
plement experimental data. Applications to reactions such
as 7Li(p, α)4He [6], 19F(p, α)16O [7] or 10B(p, α)7Be [8]
have been investigated by the DWBA method.

On the other hand, the DWBA is used to analyze
energy spectra or to determine spectroscopic factors. A
typical example is the 20Ne(3He, t)20Na which provided
the low-energy spectrum of 20Na with spin and parity as-
signments [9]. A further advantage associated with this
technique is the high value of transfer cross-sections, com-
pared to capture cross-sections. This property is crucial
for reactions involving radioactive elements, since current
intensities are rather low.
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The main disadvantage of the DWBA is the need
for parameters which are poorly known, or not known
at all. This essentially occurs in reactions involving ra-
dioactive nuclei where the interacting potentials should
be adapted from neighboring reactions. In addition, the
spectroscopic factors are expected to be somewhat depen-
dent on the potentials. A recent work by Keeley et al. [10]
highlights some difficulties related to DWBA calculations.
Their analysis of the 13C(6Li,d)17O data by Kubono et
al. [11] contradicts the original analysis performed by the
authors of ref. [11]. Keeley et al. mention possible uncon-
trolled parameters in the DWBA approach.

The aim of this work is to test the DWBA by com-
paring it with results provided by a microscopic clus-
ter model [12]. In this model, the cross-sections only de-
pend on a nucleon-nucleon interaction, and on some as-
sumptions about the cluster structure of the colliding nu-
clei. Spectroscopic factors are naturally included. Con-
sequently the predictive power of a microscopic model
is rather strong, and it is an ideal starting point for a
test of the DWBA. In this work, we limit ourselves to
the zero-range approximation, which enables a significant
simplification of the DWBA formalism, and is often used
in the literature. The zero-range approximation is known
to be accurate for light particles, such as nucleons or
α-particles [2,3].

The comparison is done for the 13C(α,n)16O reac-
tion which is quite important in astrophysics as the main
neutron source, and which has been analyzed in a mi-
croscopic model [13]. We limit ourselves to low energies,
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which are relevant for nuclear astrophysics, and where ab-
sorption channels can be neglected. We apply the DWBA
with conditions of the calculation as close as possible
to those of the microscopic model. In other words, the
α+ 13C and n + 16O potentials are fitted on the micro-
scopic phase shifts, and the spectroscopic factors are taken
from the model. Then the comparison of the microscopic
and DWBA 13C(α,n)16O transfer cross-section will pro-
vide an estimate of the accuracy of the DWBA.

We apply the DWBA in different conditions, simu-
lated by different partial waves of the 13C(α,n)16O re-
action. A non-resonant partial wave represents the natu-
ral application, as the DWBA is essentially aimed at de-
scribing direct reactions. However, at low energies, and
in light systems, reactions involving a broad resonance
can be approximately considered as a direct process. We
therefore extend our work to partial waves involving a
broad resonance, or a subthreshold state Let us notice
that the 13C(α,n)16O reaction is just an example to test
the DWBA. Although its importance in astrophysics is
well established, we do not aim here at deriving any as-
trophysical data.

A further investigation will be done by analyzing the
sensitivity of the DWBA cross-section with respect to
the nucleus-nucleus potentials. As microscopic models use
completely antisymmetric wave functions, this compari-
son should give an information on how important anti-
symmetrization effects are in transfer reactions. A simi-
lar analysis has been performed for capture reactions in
ref. [14], and shows that antisymmetrization effects are
not negligible, even at low energies.

The DWBA is based on the assumption that the trans-
fer process is weak with respect to the dominant elastic
channel. Below the Coulomb barrier, the physical origin
of this smallness is essentially due to the penetration fac-
tor, which strongly reduces the cross-section. At 3MeV,
i.e. near or slightly above the Coulomb barrier, the ex-
perimental cross-section is about 10mb [15] which, as-
suming an isotropic process, corresponds to a differential
transfer cross-section dσt/dΩ ≈ 1mb/sr. Data for elas-
tic cross-sections [16] show a non-negligible anisotropy,
but a rough estimate of the elastic cross-section provides
dσel/dΩ ≈ 200mb/sr. This strong reduction factor of the
transfer cross-section, even near the Coulomb barrier, sup-
ports the applicability of the DWBA.

In sect. 2, we briefly present the DWBA formalism, by
considering different types of reactions: exchange, strip-
ping and knock-out. The application to the 13C(α,n)16O
cross-section in presented in sect. 3. Section 4 is devoted
to concluding remarks and outlook.

2 The DWBA method

2.1 Introduction

The DWBA formalism has been developed in many pa-
pers (see for example ref. [4] and references therein). Here
we limit ourselves to basic formulas, and use the so-called
“channel-spin representation” [4] which is well suited to a

comparison with microscopic results. Most works use a dif-
ferent coupling mode, exhibiting the transferred angular
momentum. In the present case, the spin of the colliding
nuclei are first coupled to the channel spin S, which in turn
is coupled to the orbital momentum L to provide the total
spin of the system J . This coupling mode is well adapted
to reactions involving resonances, essentially characterized
by their spin and parity.

Let us assume two colliding nuclei A and a, with spins
IA and Ia in the entrance channel. The asymptotic behav-
ior of the wave function is given by

ΨMAMa
α (kα, rα) −→ ΦIAMAΦIaMa exp(ikα.rα), (1)

where we neglect the Coulomb interaction. In (1),MA and
Ma are the spin projections, rα is the relative distance
and kα the wave number; the internal wave functions are
denoted as ΦIAMA and ΦIaMa and implicitly depend on
internal coordinates. Specific cases, such as exchange or
stripping reactions, will be considered in the next subsec-
tions.

In the presence of an interaction between particles A
and a, a partial-wave expansion of the scattering wave
function (1) gives

ΨMAMa
α (kα, rα) =

4π

kαrα

∑

LαSαJMπ

〈LαmαSαMα|JM〉

×
[

ΦIA ⊗ ΦIa
]SαMα

χJπLαSα(rα)Y
mα

Lα
(r̂α)Y

mα?
Lα

(

k̂α
)

, (2)

where χJπLαSα(rα) is a partial wave in the entrance channel,

and π is the total parity π = (−1)LαπAπa. According
to ref. [4], the scattering amplitude for a transition from
channel α to channel β is given by

AMAMa,MBMb

βα (kα,kβ) = −
(µαµβ)

1/2

2πh̄2

(

kβ
kα

)1/2

×
〈

Ψ
MBMb(−)
β (kβ , rβ)

∣

∣

∣
V
∣

∣

∣
ΨMAMa(+)
α (kα, rα)

〉

, (3)

where µα and µβ are the reduced masses and V the resid-
ual interaction. In the matrix element, integration is per-
formed over all spatial coordinates. For the wave function
in the final channel β, a development analogous to (2)
is assumed, with ΦIBMB and ΦIbMb as internal wave func-
tions of the residual nuclei. The collision matrix for a total
spin J is defined as

UJπ
LαSα,LβSβ

= δLαLβδSαSβ +
ikα
2π

×
∑

MAMaMBMbmαmβ

〈LαmαSαMα|JM〉〈LβmβSβMβ |JM〉

×〈IAMAIaMa|SαMα〉〈IBMBIbMb|SβMβ〉

×

∫ ∫

dk̂α dk̂βY
mα

Lα

(

k̂α
)

Y
mβ

Lβ

(

k̂β
)

AMAMa,MBMb

βα (kα,kβ).

(4)

The coupling scheme is chosen to show up the channel
spins and angular momenta. This choice is well adapted
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to the study of resonances, characterized by a total spin J .
Using definition (3) of the scattering amplitude, we have

UJπ
LαSα,LβSβ

= δLαLβδSαSβ − i
(µαµβkαkβ)

1/2

(2πh̄)2

×

∫∫

drα drβr
2
αr

2
βW

Jπ
αβ (rα, rβ)χ

Jπ?
LαSα(rα)χ

Jπ
LβSβ

(rβ), (5)

with

W Jπ
αβ (rα, rβ) =

(4π)2

kαrαkβrβ

×
〈

[

[ΦIB ⊗ ΦIb ]Sβ ⊗ YLβ (r̂β)
]J

×|V |
[

[ΦIA ⊗ ΦIa ]Sα ⊗ YLα(r̂α)
]J
〉

. (6)

This matrix element is obtained after integration over r̂α,
r̂β and over the internal coordinates. As usual, the collision
matrix is parameterized as

UJπ
LαSα,LβSβ

= εJπLαSα,LβSβ exp
(

2iδJπLαSα,LβSβ
)

, (7)

where ε is the transition amplitude and δ the phase shift.
Definitions (5) and (6) are general. They are now devel-
oped for specific cases.

2.2 Exchange or knock-out reactions

In such reactions, the target nucleus A is assumed to be
composed of a core nucleus C and the emitted particle b
(A = C + b), whereas the residual nucleus B is comprised
of the core and the projectile a (B = C+a). This reaction
is written as

a+A (= C + b) −→ b+B (= C + a), (8)

and is illustrated in fig. 1. An example is the 13C(α,n)16O
reaction where the α-particle and the neutron are ex-
changed during the reaction; 12C is the core nucleus.

The internal coordinates are rbC and raC , which
should be converted in rα and rβ . The relationships be-
tween the (rbC , raC) and (rα, rβ) systems are given by

rbC =

(

rβ +
a

B
rα

)/(

1−
ab

AB

)

raC =

(

rα +
b

A
rβ

)/(

1−
ab

AB

)

, (9)

and the Jacobian is

J =

[

AB

C(B + b)

]3

.

According to eq. (8), the internal wave functions of nuclei
A and B are defined as

ΦIAMA = CA
√

SAu`b(rbC)
[

Y`b(r̂bC)⊗ ΦIb
]IAMA

, (10)

where SA is the spectroscopic factor, CA is the isospin
Clebsch-Gordan coefficient, and u`b(rbC) is a radial wave

α

β

Fig. 1. Scheme of the exchange reaction (see eq. (8)). (a) Be-
fore the reaction, (b) after the reaction.

function related to the C + b system. For the sake of sim-
plicity we assume here that the core nucleus has a spin
zero. A similar definition holds for the residual nucleus B:

ΦIBMB = CB
√

SBu`a(raC)
[

Y`a(r̂aC)⊗ ΦIa
]IBMB

. (11)

To compute the matrix element (6) we must specify the
residual interaction V . As we are mainly interested in a
qualitative comparison between the DWBA and a micro-
scopic approach, we use here the zero-range approxima-
tion, which allows an important simplification of the cal-
culation. Generalization to finite-range approaches can be
found in refs. [3,4] for example, but they are presented in a
different coupling mode. In the zero-range approximation,
the interaction potential between the exchanged particles
a and b is written as

V (rab) = V0δ(raC − rbC) =

V0

(

B + b

B

)3

δ

(

rβ −
A

B
rα

)

, (12)

where we have used eqs. (9). This potential contains a
central term only, and neglects spin-orbit or tensor con-
tributions.

In the zero-range approximation, the matrix ele-
ment (6) is obtained after some angular-momentum al-
gebra; we have

W Jπ
αβ (rα, rβ) = 4πV0CACB

(SASB)
1/2

kαkβrαrβ

(

A

C

)3

u`a

(

A

C
rα

)

×u`b

(

A

C
rα

)

δ

(

rβ −
A

B
rα

)

×
∑

Iab,λ

Îabλ̂Z
J
Iab,λ

(`a, Lβ , Sβ , Ia, Ib, IB)

×ZJ
Iab,λ

(`b, Lα, Sα, Ib, Ia, IA), (13)

where coefficient Z is defined as

ZJ
Iab,λ

(`a, Lβ , Sβ , Ia, Ib, IB) = (−1)Lβ
[

L̂βŜβ ÎB

]1/2

×〈Lβ0λ0|`a0〉

{

`a Ia IB
Ib Sβ Iab

}{

Iab `a Sβ
Lβ J λ

}

, (14)

and where we have introduced the notation x̂ = 2x+1. In
eq. (14), Iab results from the coupling of spins Ia and Ib
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and λ corresponds to the transferred angular momentum.
If we assume Ia = `b = 0, eq. (13) is strongly simplified,
and reduces to

W Jπ
αβ (rα, rβ) = 4πV0CACB

(SASB)
1/2

kαkβrαrβ

(

A

C

)3

u0

(

A

C
rα

)

×u`a

(

A

C
rα

)

δ

(

rβ −
A

B
rα

)

[

L̂αL̂βŜβ

]1/2

×(−1)Lα+Lβ+`a+Sβ+J

×〈Lβ0Lα0|`a0〉

{

Ib `a Sβ
Lβ J Lα

}

. (15)

This expression has been used to determine the
13C(α,n)16O cross-section, presented in sect. 3.

2.3 Stripping reactions

A reaction such as 13C(α,n)16O can be seen in two differ-
ent ways: i) the α and neutron are exchanged or ii) a 3He
particle is stripped from α to the 13C target. In general
a stripping reaction A(a, b)B is assumed to occur with a
projectile made up of the emitted particle b and another
particle x which is captured by the target. The stripping
process is illustrated in fig. 2. The interaction responsible
is usually taken as V (rbx), the interaction potential be-
tween particles b and x. We need to specify the matrix
element (6) for stripping reactions.

The relationships between the (rbC , raC) and (rα, rβ)
systems are now given by

rAx =
bAB

ax(A+ a)
rβ −

(

1 +
bA2

ax(A+ a)

)

rα

rbx =
AB

x(A+ a)

(

rβ −
A

B
rα

)

, (16)

and the Jacobian is

J =

[

AB

x(A+ a)

]3

.

As before, the wave functions of particles a and B are
defined as

ΦIaMa = Ca
√

Sau`a(rbx)
[

Y`a(r̂bx)⊗ ΦIbx
]IaMa

,

ΦIBMB = CB
√

SBu`B (rAx)
[

Y`B (r̂Ax)⊗ ΦIAx
]IBMB

, (17)

where Ibx and IAx result from the couplings of Ib and Ix,
and of IA and Ix, respectively. As for exchange reactions,
we use the zero-range approximation [2],

V (rbx)u`a(rbx)Y`a(r̂bx) = D0δ(rbx) =

D0

[

AB

x(A+ a)

]

−3

δ

(

rβ −
A

B
rα

)

, (18)

α

β

Fig. 2. Scheme of the stripping reaction. (a) Before the reac-
tion, (b) after the reaction.

which selects s waves only for `a. With this approximation,
the matrix element (6) is

W J
αβ(rα, rβ) = 4πD0

CaCB(SaSB)
1/2

kαkβrαrβ

×u`B (rα)δ

(

rβ −
A

B
rα

)

(−1)IAx+Ia+Ib+Lα+J+IA+Sα

×
[

ˆ̀
BL̂β ÎBŜαŜβ ÎAxÎa

]1/2

〈`B0Lβ0|Lα0〉

×

{

`B IB IAx
Ib Sα Sβ

}{

`B Lβ Lα
J Sα Sβ

}{

IA Ix IAx
Ib Sα Ia

}

. (19)

For the 13C(α,n)16O reaction, we have

IA = IB = 0,

Ia = Ix = Ib = 1/2,

and eq. (19) is simplified to

W J
αβ(rα, rβ) = 4πD0

CaCB(SaSB)
1/2

kαkβrαrβ

×u`B (rα)δ

(

rβ −
A

B
rα

)

(−1)Lα+J+1/2
(

L̂β ˆ̀B/2
)1/2

×
〈

`B0Lβ0|Lα0
〉

{

`B Lα Lβ
J 1/2 1/2

}

. (20)

For a pick-up reaction, the cross-section is obtained in the
same way, by swapping the roles of channels α and β.

3 Application to the 13C(α, n)16O reaction

3.1 Outline of the microscopic model

In a microscopic model, the wave functions depend upon
all nuclear coordinates, and are antisymmetrized to ac-
count for the Pauli principle. The cross-sections are de-
rived from a A-body Hamiltonian which contains one or
two parameters in the nucleon-nucleon interaction. As our
reference calculation is based on a microscopic cluster
model, we give here a brief description of this model. In a
microscopic model [12,17], the Hamiltonian of the system
reads

H =

A
∑

i=1

Ti +

A
∑

i<j

Vij , (21)
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where A is the nucleon number, Ti the kinetic energy of
nucleon i and Vij an effective nucleon-nucleon interaction.

In the Resonating Group Method (RGM), a trial wave
function of the A-nucleon system is defined from cluster
wave functions φ1 and φ2. In RGM notations, the total
wave function with the total angular momentum J and
parity π is therefore

ΨJMπ =
∑

α`I

A
[

[φα1 ⊗ φα2 ]
I ⊗ Y`(Ω)

]JM
gJπα`I(ρ), (22)

where ρ = (ρ,Ω) is the relative coordinate, A the
A-nucleon antisymmetrization operator and I the chan-
nel spin. The relative functions gJπα`I(ρ) are to be deter-
mined from the Schrödinger equation of the system. Label
α takes the values 1 and 2 for the α+ 13C and n + 16O
channels, respectively.

In practice, functions gJπα`I(ρ) are expanded over a
Gaussian basis involving the Generator Coordinate R
where the Gaussian functions are centred. This method is
known as the Generator Coordinate Method (GCM —see
refs. [12,18]), and allows a systematic treatment of the
calculations. It has been applied to many systems, in re-
cent years (see references in ref. [18]). In the GCM, wave
function (22) is rewritten as

ΨJMπ =
∑

α`I

∫

fJπα`I(R)Φ
JMπ
α`I (R) dR, (23)

where ΦJMπ
α`I (R) is a projected Slater determinant, and

fJπα`I(R) the generator function. The calculation of the ra-
dial functions is therefore replaced by the calculation of
the generator functions. The use of the R-matrix method
provides a correct description of boundary conditions, and
allows us to apply definition (23) for scattering states as
well as for bound states.

3.2 Conditions of the calculation

The 13C(α,n)16O reaction plays an important role in nu-
clear astrophysics [5]. It has been investigated by several
groups (see ref. [11] and references therein), and is a good
candidate to be studied by the DWBA method. Our goal
here is not to provide an optimized DWBA analysis, but
to test its precision and sensitivity through a comparison
with a previous microscopic study [13]. In ref. [13], the
cluster model was shown to provide a fair description of
the available cross-sections; it also pointed out the impor-
tance of the 1/2+

2 subthreshold state in 17O.
In the present work, we compare the transition am-

plitude ε (7) obtained in the microscopic model with the
DWBA approach. We refer to ref. [13] for the conditions
of the microscopic calculation. The transition amplitudes
provide the transfer cross-section. We use, in the DWBA
method, conditions as close as possible to those of ref. [13].
In other words, the α+ 13C and n + 16O potentials, used
to generate the radial wave functions χ (see eq. (5)) are
determined by fitting the microscopic phase shifts. The
Q value, taken from the literature [19], is Q = 2.22MeV.
The other ingredients of the DWBA are

Table 1. Spectroscopic factors S.
System S C
13C=12C+ n 1 1
16O=12C+ α 0.33 1
4He=3He + n 1 1/

√
2

16O=13C+ 3He 0.19 1/
√
2

– The 12C+ n and 12C+ α wave functions u0 in eqs. (15)
and (20). In the microscopic theory, the 13C and 16O
wave functions are defined in the shell model [12,13].
Accordingly, the 12C+ n and 12C+ α wave functions
are harmonic-oscillator orbitals with angular momen-
tum ` = 1 (0), and number of radial nodes nr = 0 (2)
for 12C+ n (12C+ α).

– The spectroscopic factors of 13C and 17O, which are
taken from the microscopic model. These are deter-
mined as explained in ref. [20], and are given in table 1.

– The amplitude V0 of the α + n potential, assumed to
have a zero range. This is determined by fitting an
α + n equivalent potential on the microscopic phase
shifts, and then by evaluating the volume integral.
From eq. (12), we have

V0 = 4π

∫

Vα+n(r) r
2 dr. (24)

As is well known the α + n system presents a non-
negligible parity effect. Averaging over both parities,
we obtain V0 = −2700MeV fm3.

– For stripping reactions we need the zero-range am-
plitude D0. For the 3He + n wave function, we as-
sume a 0s oscillator function, which is consistent
with the shell-model description of the α-particle
used in the microscopic approach. For the 3He + n
potential, a Gaussian approximation has been used,
with parameters constrained by the α binding en-
ergy. Different sets of potentials provide values be-
tween −900 and −1100MeV fm3/2. We have adopted
D0 = −1000MeV fm3/2.

The transition amplitude ε is then determined for
some typical partial waves. We have chosen here Jπ =
1/2+, 1/2− and 3/2−, which present different behaviors:
the 1/2+ partial wave involves a subthreshold state, 1/2−

a broad resonance near 2MeV, and 3/2− is non-resonant.
In the 13C(α,n)16O reaction, the main contribution comes
from the 1/2+ partial wave. Although the resonant char-
acter of the process is accounted for in the wave functions,
the validity of the DWBA for narrow resonance and for
subthreshold states is less well established. In the litera-
ture, it has been applied both to non-resonant (see ref. [7]
for example) and resonant (see refs. [8,21] for example)
cross-sections. Let us remind that our main aim here is to
compare the DWBA with a microscopic approach, in con-
ditions typical of those found in the literature. The partial
waves are chosen as a representative set of conditions oc-
curring in low-energy reactions.
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Fig. 3. Microscopic (solid lines) and potential-model (dotted
lines) α+ 13C (a) and n + 16O (b) phase shifts. Energies are
expressed in the c.m. of the α+ 13C channel.

Table 2. Potential parameters (see eq. (25)).m` is the number
of forbidden states. Potentials are in MeV and lengths in fm.

J ` V1 a1 V2 a2 m`

13C+ α
1/2+ 1 −88.0 2.97 −160 1.0 3
1/2− 0 −28.0 3.43 −500 1.0 3
3/2− 2 −40.0 3.07 −500 1.0 2

16O+ n
1/2+ 0 −77.0 2.36 1
1/2− 1 −39.0 3.50 1
3/2− 1 −50.0 3.15 1

3.3 Results assuming an exchange process

In this subsection, we assume that the 13C(α,n)16O reac-
tion proceeds through an exchange mechanism. The ex-
ternal neutron of 13C and the incident α-particle are ex-
changed during the collision. An other assumption, i.e.

the stripping of a 3He fragment from the α-particle will
be considered later. This comparison will be a further test
of the sensitivity of the DWBA with respect to basic as-
sumptions.

The 13C+ α and 16O+ n phase shifts are given in
fig. 3. For the DWBA calculations, these phase shifts have
been fitted by a Gaussian potential

V (r) = V1 exp
(

− (r/a1)
2
)

+ V2 exp
(

− (r/a2)
2
)

. (25)
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Fig. 4. Transition amplitudes obtained in the exchange ap-
proximation for J = 1/2+ (a), J = 1/2− (b), and J = 3/2− (c).
Thick curves: reference microscopic calculation, solid curves:
DWBA calculation, dotted curves: DWBA calculation with
modifications of the conditions of the calculation (see text).

The potential depths are chosen according to the num-
ber of forbidden states, which play an important role in
microscopic theories [12]. Also the bound-state energies
should be reproduced reasonably well by the nucleus-
nucleus potentials. To this end, a single Gaussian func-
tion is not sufficient, and we need to introduce a second
function in the potential. The parameters are given in ta-
ble 2; these potentials reproduce the microscopic phase
shifts within 2◦ or better. As we deal with low energies,
absorption is negligible, and the potentials are therefore
real. The system is composed of two channels with spin
1
2 ; the collision matrix (7) is therefore of size (2× 2), and
for each partial wave a single transition amplitude ε is de-
fined. It determines the coupling between the 13C+ α and
16O+ n channels.

The transition amplitudes ε are given in fig. 4. In or-
der to remove the strong energy dependence occurring
at subCoulomb energies, we have divided ε by the pen-
etration factor exp(−πη), where η is the Sommerfeld pa-
rameter. Figure 4 shows that the DWBA does reproduce
the energy dependence. This is not surprising since the
energy dependence is mainly given by the wave func-
tions in the entrance channel, which are derived from a
phase-equivalent potential. The normalization, however,



A. Adahchour and P. Descouvemont: A test of the zero-range DWBA method at astrophysical energies 441

Table 3. 12C+ n and 12C+ α potentials, with the correspond-
ing

√

〈r2〉 values. Potentials are in MeV and lengths in fm.

V1 a1

√

〈r2〉
12C+ n
set 1 −80.4 2.10 2.74
set 2 −94.8 1.90 2.58

12C+ α
set 1 −100.0 2.56 2.90
set 2 −112.1 2.36 2.75

is somewhat different. The DWBA overestimates the ref-
erence calculation. The overestimation factor is about 4
for J = 1/2− and 2 for J = 3/2−. For J = 1/2+, the low-
energy part is essentially determined by the properties of
the 1/2+ subthreshold state, which yield the low-energy
enhancement.

One of the main goals of the present work is to evalu-
ate the sensitivity of the DWBA against some inputs. As
a first test, we have replaced the harmonic-oscillator wave
functions of 13C and 16O by more realistic functions, de-
duced from a potential model. This approach is not fully
consistent with the microscopic model, but provides an
interesting way to evaluate the DWBA stability. We have
used single-Gaussian potentials with the parameters fit-
ted to the experimental binding energies (−4.95MeV for
12C+ n and −7.16MeV for 12C+ α). Two different sets
(see table 3) have been used. They slightly differ by the
√

〈r2〉 values, i.e. the mean distance between 12C and α or
neutron. Figure 4 shows that the transition amplitude is
rather sensitive to the 13C and 16O wave functions. These
wave functions are very close to harmonic-oscillator func-
tions, corresponding to the microscopic model, but the
long-range part presents a more physical behavior, and
slight changes in the inner part have a non-negligible ef-
fect on the transition amplitude.

A further test of the sensitivity of the DWBA has been
performed by replacing the 13C+ α and 16O+ n poten-
tials by their supersymmetric partners. The supersym-
metric transform [22] keeps the phase shifts unchanged,
but deep potentials are replaced by equivalent potentials
presenting a repulsive core. The corresponding wave func-
tions do not have nodes associated with the forbidden
states [22]. The results are shown in fig. 4, where we find
out that the DWBA is much closer to the microscopic
results. The DWBA appears to be quite sensitive to the
description of the scattering wave functions (up to a factor
of 20 for Jπ = 1/2−), although the phase shifts are identi-
cal. There is no physical argument to conclude that super-
symmetric potentials are better adapted than deep poten-
tials. Until now, different attempts (see, e.g., refs. [23,24])
have been done to compare both approaches in different
conditions such as spectroscopy [23] or nucleus-nucleus
bremsstrahlung [24]. In these works, supersymmetric and
deep potentials provide very similar results. This is not the
case for the DWBA, but the better agreement obtained
with supersymmetric potentials is probably a coincidence.
Further studies are needed to clarify this conclusion.
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Fig. 5. Upper panel (a): 13C+ α and 16O+ n wave functions
for Jπ = 1/2− and E = 0.25MeV. Lower panel (b): integral
(thick curve) and integrand (thin curve) (5). The supersym-
metric results are given as dotted curves.

To understand this striking feature, we have analyzed
the DWBA integral (5) in more detail. In fig. 5, we present
the zero-range integrand (5) along with the integral up to
a finite distance r. The calculation is done Jπ = 1/2−, and
for 3 different energies; 0.25MeV is a typical energy for as-
trophysical applications. As shown in fig. 5, the integrand
presents fast variations at small distances (r ≤ 4 fm). Only
short distances contribute to the DWBA matrix element.
Consequently, slight modifications in the wave functions
have a significant impact on the integral, which explains
the sensitivity against the conditions of the calculation.

3.4 Results assuming a stripping process

As mentioned before, the 13C(α,n)16O can also be consid-
ered as a stripping mechanism, where an 3He fragment of
the α-particle is transferred to 13C. The entrance and exit-
channel potentials are unchanged. The DWBA amplitudes
are presented in fig. 6. The agreement between the DWBA
and the microscopic model is different according to J . In
the non-resonant 3/2− partial wave, both approaches are
fairly close to each other. On the contrary, the DWBA
provides larger transition amplitudes for J = 1/2− which
involves a broad resonance near 2MeV. For J = 1/2+,
the DWBA strongly underestimates the microscopic ap-
proach. As in sect. 3.2, we also use supersymmetric part-
ners of the nucleus-nucleus potentials. The DWBA results
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Fig. 6. Transition amplitudes obtained in the stripping ap-
proximation for J = 1/2+ (a), J = 1/2− (b), and J = 3/2− (c).
Thick curve: microscopic reference calculation, thin solid curve:
DWBA calculation, dashed curves: DWBA calculation with su-
persymmetric potentials.

appear to be very sensitive to this choice. Again, the rea-
son is that the DWBA integrand (20) is essentially given
by short-distance contributions, which strongly depend on
slight details in the wave functions.

4 Conclusion

The aim of the present work is to derive DWBA transition
amplitudes, starting from microscopic results. The condi-
tions of the calculation have been chosen to be as equiv-
alent as possible to the microscopic model: the nucleus-
nucleus potentials have been fitted to the phase shifts,
and the spectroscopic factors are identical. Our example
is the 13C(α,n)16O reaction which is one of the main neu-
tron sources in stars. The DWBA transitions amplitudes
have been determined in two assumptions: exchange or
stripping processes. In both case, the zero-range approx-
imation has been used; qualitatively this approximation
should not affect our results.

The conclusion drawn from this work is twofold. On
the one hand, the DWBA method turns out to be very
sensitive to the conditions of the calculations: choice of the
nucleus-nucleus potentials and, to a lesser extent, of the
wave functions of the colliding nuclei. This sensitivity is

due to very basic properties, i.e. the short-range character
of the DWBA matrix elements, which are quite sensitive
to details of the wave functions. This is true for broad res-
onances, but also for non-resonant processes, where the
DWBA is expected to be more accurate. On the other
hand, the DWBA and the reference microscopic method
provide the same energy dependence, as the phase shifts
are equivalent. However, the amplitudes can be rather dif-
ferent, and this difference varies with angular momentum.
This is most likely due to antisymmetrization effects which
are approximately included in the DWBA through the
choice of deep nucleus-nucleus potentials. This property
should also occur in other systems and suggests that the
DWBA method can only provide transfer cross-sections
with a non-negligible uncertainty.

Of course, the present comparison relies on some quan-
tities such as V0 or D0 which must calculated in a simple
way to be as consistent as possible with the GCM. More
refined approaches should be used to go beyond this com-
parison and to apply the DWBA in optimal conditions.
However, this does not change the conclusion about the
sensitivity of the DWBA to fundamental quantities, such
as the wave functions of the colliding nuclei and of the
transferred particle. Application of the DWBA to nuclear
astrophysics should therefore include this sensitivity in the
calculation of the cross-sections.
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